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Abstract: Significant asymmetric induction has been observed in the cycloaddition reaction of 
dichloroketene with chiral enol ethers. The resultant diastereomeric cyclobutanones have been 
converted to synthetically useful a-chlorocyclopentenones in optically active form. 

The asymmetric Diels-Alder reaction using dienophiles bearing chiral control elements has 

been extensively studied by several groups and has found considerable application in synthesis.' 

Notwithstanding the importance of the ketene-olefin cycloaddition reaction,2 there has been no 

parallel effort made to date to assess the possibility of obtaining synthetically useful dia- 

stereofacial differentiation in the reaction of ketenes with ketenophiles bearing chiral auxil- 

iaries. 3 In this communication we disclose our preliminary results is this area. 

a,a-Dichlorocyclobutanones are highly versatile cycloadducts, easily arfording, inter alia, 

regioselectively substituted cyclopentanones, y-butyrolactones, and pyrrolidones, 
2 and thus they 

are particularly attractive targets for asymmetric synthesis. We have successfully synthesized 

these intermediates (II, eq 1) through such a process using, in the present study, principally 
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“common” chiral auxiliaries (RxOH) that are available in both antipodal series and Z enol ethers 

(where R'=R"=H); t o illustrate the potential of this approach, these intermediates have been 

converted to several optically active cyclopentenone derivatives. 

The enol ethers, exclusively 2, can easily be obtained by isomerization of the corresponding 

ally1 ethers, with4 or without, 5 concomitant alkylation. Dichloroketene6 (1.1-2.5 equiv CC1 COCl, 3 
to these compounds to produce selectively, 

a,a-dichlorocyclobutanones that are indi- 

4 equiv En-Cu, ether, 2O'C) was found to add smoothly 

and in generally high crude yield, the diastereomeric 

cated in Table I. 
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TABLE I. Cycloaddition of Dichloroketene with Chiral Enol Ethers. 
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aRef 19. bRef 10a. 'Oppolzer, W.; Chapuis, C.; Dao, G. M.; Reichlin, D.; Godel, T. 
Tetrahedron Lett. 1 

& 
, 46, 4781-4784. doppolzer, W.; Chapuis, C.; Kelly, M. J. Helv. 

Chim. Acta ,Q,!@, 6 , 358-2361. The ally1 ether of this alcohol could not be alkylated. 
eobtained from (+FIO-camphorsulfonic acid (SOC12; KMnO4; CH2N2; Li~@?lS)2,LiAlH4; C4H8, 
H+; LiAlH4). 
691. 

See, Bartlett, P. D.; Knox, L. H. Org. Synth., Coll. Vol. 5, m, 689- 
fRef lob. gRef 10~. hRef IOd. 

The crude mixtures of cycloadducts II were transformed directly (CH2N2; ' Cr(C104)2,8 ca. 60% 

yield, with recovery of the intact auxiliary alcohols) to the corresponding chiral a-chlorocyclo- 

pentenones m, which were then used to determine the diastereoselectivities of the cycloaddi- 

tions' and to establish the absolute configurations of the adducts. 10 The results indicate that 

the cycloadditions, in agreement with our expectations, occur preferentially in entries 1 and 
5-9 on the Co-& face and in entry 3 on the Co-z face of the 2 enol ethers, which for steric 

reasons, must adopt a rather well-defined s-trans (or nearly s-trans.) conformation. 16 In this 

conformation, ketene attack cofacial with the chain encounters considerable steric hindrance. 
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The a-chlorocyclopentenones are choice intermediates themselves, readily undergoing a variety 

of synthetically useful conversions. Thus, for example, the dextrorotatory enones $,$ are trans- 

formed in high yield to the corresponding (S)-(-)cyclopentanones by catalytic hydrogenation 

(Chart I). In addition, cuprate reagents 17 
‘3 m 

can be used to obtain trans-3,4_disubstituted cyclo- 

pentanones from these enones (e.g., (+>-k + (-)-&a), and their treatment with lithium tri-sec- - 
butylborohydride followed by acetic anhydride 18 yields the corresponding chloro enol acetates 

(e.g., (+)-$ + (+)-%). Of course, many other transformations of these enones are possible. 

Chart I 
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Importantly, this approach can also be applied to cyclic enol ethers. The enol ether 2, 

derived from cyclopentanone dimethyl acetal and (-)-menthol (TsOH, toluene, A, 7O%), affords 

the a-chloro enone (-)-Q in 43% enantiomeric excess (eq 2); the use of (-)-Gphenylmenthol 19 

in this sequence also yields C->-g, but now in 67% optical purity. 
20 

The chloro enone c-)-t can 

readily be transformed to t-)-x as shown. 

OR’ 
Cl 

1. 
> 

.=O,ca.75% 
Cl 

P.CH,N, ;.Cr(C104)2 

Cl 

; 
0 

Li (CH@u 
0 

Cr(C10& 
(2) 

ca70% Ii 68% Ii 

5 W-2 r-1-2 

In summary, this preliminary study has demonstrated for the first time that significant 

asymmetric induction can, in fact, be achieved in the [2+2]-cycloaddition reaction of dichloro- 

ketene with chiral enol ethers. Refinement and extension of this methodology and its application 

in natural product synthesis are currently under investigation. 
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